Mark Scheme (Results)
 October 2017

Pearson Edexcel International Advanced Level In Biology (WBIO1) Paper 01
Lifestyle, Transport, Genes and Health

edexcel

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2017
Publications Code WBIO1_01_1710_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Answer				Additional guidance	Mark
1(a)		$; \rightarrow 2 x$;	ACCEPT structural formula for water or 'water' ACCEPT- COOH ACCEPT 2 separate amino acids drawn in box	(2)

Question Number	Answer	Additional guidance	
$\mathbf{1 (b)}$	hydrolysis;	Accept-hydrolisis	(1)

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 (c)}$	peptide bond ;		$\mathbf{(1)}$

| Question
 Number | Answer | Additional guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 (d)}$ | 1. active site that \{ fits /eq \} the \{ substrate /dipeptide \}; | mp1 accept-connects to,
 attaches mp1 accept an ESC is
 formed/eq |
| | 2. lowers the activation energy (for the reaction); | |
| 3. detail of how the activation energy is lowered ; | mp3 e.g. by weakening or
 breaking the peptide bond | |

Question Number	Answer	Mark
$\mathbf{2 (a)}$	2(a). The only correct answer is C \boldsymbol{A} is not correct because although membranes contain carbohydrate this plays no role in the diffusion of oxygen B is not correct because although membranes contain cholesterol this plays no role in the diffusion of oxygen \boldsymbol{D} is not correct because oxygen is non-polar	

Question Number	Answer	Additional guidance	Mark
$\mathbf{2 (b) (\mathbf { i })}$	Alveoli / alveolus / alveolar wall / eq ;	Allow description of alveoli e.g. layer of squamous epithelium	(1)

Question Number	Answer	Mark
$\mathbf{2 (b) (i i)}$	$\mathbf{2 (b) (i i) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ B ~}$	
	\boldsymbol{A} is not correct because surface area is not at its maximum and the thickness is not at its minimum	
	\boldsymbol{C} is not correct because surface area is not at its maximum and the thickness is not at its	D is not correct because surface area is not at its maximum and the thickness is not at its

Question Number	Answer	Additional guidance	Mark
$\mathbf{2 (c) (i)}$	$1.18(\mathrm{~mm}) / 1.8 \mathrm{~cm}$	Accept range from $17-19 \mathrm{~mm} / 1.7-1.9 \mathrm{~cm}$ Ecf to $\mathrm{mp2}$	
	$2.0 .4(\mu \mathrm{~m}) ;$	Accept- $0.36 / 0.38 / 0.4 / 0.404$ Correct answer with no working gains both marks	(2)

Question Number	Answer	Additional guidance	Mark
2(c)(ii)	endothelial / (squamous) epithelial cell ;	ACCEPT endothelium, (simple / pavement / flattened) epithelium	(1)

Question Number	Answer	Additional guidance	Mark
$\mathbf{3 (a)}$	1. phospholipids are able to move ;	Mp1 accept ref to them being fluid	
	2. proteins are scattered in the membrane / eq ;	Mp2 Ignore ref to them forming a mosaic Mp2 Accept-randomly distributed	(2)

Question Number	Answer	Mark
$\mathbf{3 (b}(\mathbf{i})$	$\mathbf{3 (b (i) . T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ D ~}$	
	\boldsymbol{A} is not correct because this is too low	
	\boldsymbol{B} is not correct because this is too low	
\boldsymbol{C} in not correct because this is too low	(1)	

Question Number	Answer	Additional guidance	Mark
$\mathbf{3 (b) (\text { (ii) }}$	diffusion;	Accept simple diffusion	$\mathbf{(1)}$

Question Number	Answer	Additional guidance	Mark
3(c)(i)	• increase ;		
	• greater/ higher/eq ;		
	• permeable ;	DNA-semi/partially permeable	
	• osmosis ;		(4)

Question Number	Answer	Additional guidance	Mark
3(c)(ii)	1. (membrane) proteins are denatured by heat / eq ;	Mp1-Accept proteins are damaged/disrupted DNA- destroyed/killed Ignore ref to membrane ONLY	
2. \{solutes / cytoplasm / water/eq \} leave the \{cells/tissues\} ;	Mp2-accept cell contents leave only		

Question	Answer	Additional guidance	Mark
4(a)	1. if energy \{intake/input\} exceeds energy requirements/eq ; 2. idea that excess energy will be stored as fat ; 3. resulting in an increase in \{body mass/BMI\} ;	Mp1 accept energy expenditure/output/used I-ref to calories Mp3 accept weight Ignore obesity	(2)
Question Number	Answer	Additional guidance	Mark
4(b)(i)	EITHER 1. $1.74-0.90=0.84$; 2. $(0.84 \div 1.74) \times 100=48.3 \%$; OR 3. $1.74-0.90=0.84$; 4. $(0.84 \div 0.9) \times 100=93.33 \%$;	Correct answer with no working gains full marks DNA-48 as a whole number DNA-48.2 Accept-48.28 and 48.27	(2)
Question Number	Answer	Additional guidance	Mark
4(b)(ii)	reduced levels of selenium (in the diet) are associated with an increase in BMI/obesity (for both men and women) ;	ACCEPT converse ACCEPT inverse / negative correlation ;	(1)

Question Number	Answer	Additional guidance	Mark
4(b)(iii)	1. skin fold thickness ; 2. waist circumference/eq ;	3. waist to hip ratio ; 4. body fat mass/body fat \% ; 5. body fat distribution ;	Mp2 accept size/width/diameter DNA-hip to waist ratio DNA-mass/weight only DNA-BMR

Question Number	Answer	Mark
4(c)(i)	4(c)(i). The only correct answer is C	
	\boldsymbol{A} is not correct because a correlation is not shown	
\boldsymbol{B} is not correct because a correlation is not shown		
\boldsymbol{D} is not correct because a correlation is not shown	(1)	

Question Number	Answer	Additional guidance	Mark
4(c)(ii)	1. idea that smoking causes platelet damage ; 2. increases the risk of formation of blood clots ;	Mp1 accept platelets become "sticky"	
3. increases the risk of \{plaque formation/atheroma/ atherosclerosis\} ; 4. increases blood pressure ;		(3)	

Question	Answer	Additional guidance	Mark
5(a)	1. frog and humans have a double circulatory system ; 2. frog and human hearts have two atria ; 3. frog and human have pulmonary circuit /carry blood to lungs ; 4. frog and human have a systemic circuit /carry blood around body ; 5. frog heart has only one ventricle while human heart has two/eq ; 6. in frog oxygenated blood and deoxygenated blood are mixed but not mixed in humans/eq:	Please not that each MP must be comparative-ie mention both frog and human to gain mark Ignore-3 v 4 chambers Mp5 accept frog heart has no septum/is not separated while human heart has septum/is separated	(4)
Question Number	Answer	Additional guidance	Mark
5(b)	1. oxygenated and deoxygenated circuits are kept separate / not mixed/eq ; 2. idea that this maintains a steep gas concentration gradient in the lungs/eq ; 3. (leading to) a fast rate of diffusion of \{ oxygen / carbon dioxide / gases $\}$ in the lungs	Accept converse for all mps	(3)

Question Number	Answer	Additional guidance	Mark
*5(c)	1. atrioventricular valve opens during atrial systole; 2. to allow blood to flow into the ventricle ; 3. atrioventricular valve closes during ventricular systole ; 4. to prevent blood flowing back into the atria ; 5. semilunar valve opens during ventricular systole ;QWC emphasis is clarity of expression Paired responses-but mp1/3/5/7 are stand alone marks. Accept named AV valves eg bicuspid and tricuspid Accept contraction for systole/relaxation for diastole for all mps		
7. semilunar closes during diastole ; 8. to prevent blood from flowing back into the ventricle ;		(5)	

Question Number	Answer	Additional guidance	Mark
$\mathbf{6 (a) (i)}$	1. place a Daphnia (in a drop of solution) on a microscope slide/eq ;	2. use an appropriate method to hold Daphnia in place; ; Mp2 eg cotton wool/ cover slip/vaseline 3. time/stated time to acclimatise in the solution	4. count number of heart beats in set time period- eg 10 secs-60 secs ;
5. determine heart rate at each time point ; 6. named control variable ; eg temperature, concentration / volume of glucose / lactose, time for acclimatisation	Mp6 eg temperature, concentration / volume of glucose /lactose, time for acclimatisation,same species or source of Daphnia/pH		

Question	Answer	Additional guidance	Mark
6(a)(ii)	1. idea that glucose has very little effect on the heart rate ; 2. idea that overall lactose causes a decrease in heart rate(compared with control) ; 3. lactose has very little effect on heart rate $\{$ in the first 16 minutes/up to 16 minutes\} ; 4. idea that lactose decreases the heart rate \{after 16 minutes/from 16 minutes until the end\} ; 5. credit correct manipulation of figures compared to the control ;	ACCEPT glucose increases heart rate slightly Eg at end of experiment/90 mins there is a diff of 140 bpm between lactose and control or x 4.5	(3)

Question Number	Answer	Mark
$\mathbf{6 (a) (i i i)}$	$\mathbf{6 (a) (i i i) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ B ~}$ lactose is NOT made from glucose and fructose only lactose contains a glycosidic bond because it is a disaccharide glucose IS a monosaccharide and lactose is NOT a monosaccharide	

Question Number	Answer	Additional guidance	Mark
6(b)(i)	1. lactose is larger than glucose/converse ; 2. lactose fills the opening in the ion channels ;	Accept: lactose has a different shape Mp2 accept glucose passes through the ion channel DO NOT ACCEPT lactose blocks the channel	
Question Number Answer Additional guidance (2)			
6(b)(ii)	1. named disaccharide ; 2. slows/decreases (heart rate)/same effect as lactose; or 3. named monosaccharide ; 4. has no/little effect (on heart rate)/same effect as glucose ;	e.g. sucrose, maltose,	Mark

Question Number	Answer	Mark
$\mathbf{7 (a) (\mathbf { i })}$	$\mathbf{7 (a) (\mathbf { i } . \text { The only correct answer is C }}$	
	\boldsymbol{A} is not correct because hexose sugars are not present	
	\boldsymbol{B} is not correct because hexose sugars are not present	\boldsymbol{D} is not correct because uracil is not present

Question Number	Answer	Mark
$\mathbf{7 (a) (i i)}$	$\mathbf{7 (a) (i i) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ D ~}$	
	\boldsymbol{A} is not correct because alleles occur in pairs	
	\boldsymbol{B} is not correct because there will always be SOME effect	
\boldsymbol{C} is not correct because being heterozygous is irrelevant	(1)	

Question Number	Answer	Additional guidance	Mark
	1. parents correctly shown; 2. three genotypes shown in offspring ; 3. six genotypes shown as male and female ;	Allow consequential error (incorrect parents) Ignore Punnet squares	(3)

Question Number	Answer	Additional guidance	Mark
7(c)(i)	1. there are 20 (different) amino acids ; 2. three bases gives 64 possibilities ;	3. two bases gives 16 possibilities ; 4. idea that three bases is more than enough, two bases would not be enough ;	

Question Number	Answer	Additional guidance	Mark
7(c)(ii)	(QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence) 1. double helix/DNA unwinds/unzips/separates/eq ; 2. helicase breaks hydrogen bonds ; 3. (mono) nucleotides line up along the single strands ; 4. complementary base pairing occurs ; 5. hydrogen bonds form (between bases) ; 6. DNA polymerase joins the nucleotides together ; 7. with phosphodiester bonds ; 8. reference to semiconservative replication / two identical \{copies of DNA/daughter strands\} are made ;	QWC emphasis is logical sequence [penalise once only] Mp4 accept description of complementary base pairing eg A-T/G-C	(5)

Question Number	Answer	Additional guidance	Mark
8(a)	1. idea that prothrombin is the inactive enzyme ; 2. prothrombin is converted to \{ thrombin /an active enzyme\} ; 3. by thromboplastin ; 4. (thrombin) converts fibrinogen to fibrin ; 5. fibrin traps \{platelets/red blood cells\} to form clot ;	mp1 ignore protein mp1 ignore inactive only	(3)
Question Number	Answer	Additional guidance	Mark
8(b)	1. as prothrombin concentration increases clotting time decreases ; 2. more prothrombin to convert into thrombin ; 3. the greater the concentration of thrombin the faster the production of fibrin :	Mp1 accept negative correlation/inverse relationship	(3)

Question	Answer	Additional guidance	Mark
8(c)(i)	1. presence of prothrombin mutation increases the risk (of heart attack)/converse ; 2. homozygous (recessive) for mutation have the \{ highest risk / higher risk than heterozygotes \} (of heart attack) ; 3. \{ other blood groups / not group O \} increase the risk of heart attack (for all prothrombin genotypes) ; 4. credit correct manipulation of figures ;	1. ACCEPT homozygous for no mutation have lowest risk (of heart attack) ; 3. ACCEPT converse	(3)
Question Number	Answer	Additional guidance	Mark
8(c)(ii)	1. mutation in prothrombin increases the risk of blood clotting ; 2. mutation results in an altered primary structure for prothrombin ; 3. active site of thrombin has altered shape/eq ; 4. thrombin produced has increased enzyme activity ;	Mp2 accept different order/sequence of amino acids	(3)

